Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 187
1.
bioRxiv ; 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38562758

Candida auris is an emerging nosocomial fungal pathogen associated with life-threatening invasive disease due to its persistent colonization, high level of transmissibility and multi-drug resistance. Aggregative and non-aggregative growth phenotypes for C. auris strains with different biofilm forming abilities, drug susceptibilities and virulence characteristics have been described. Using comprehensive transcriptional analysis we identified key cell surface adhesins that were highly upregulated in the aggregative phenotype during in vitro and in vivo grown biofilms using a mouse model of catheter infection. Phenotypic and functional evaluations of generated null mutants demonstrated crucial roles for the adhesins Als5 and Scf1 in mediating cell-cell adherence, coaggregation and biofilm formation. While individual mutants were largely non-aggregative, in combination cells were able to co-adhere and aggregate, as directly demonstrated by measuring cell adhesion forces using single-cell atomic force spectroscopy. This co-adherence indicates their role as complementary adhesins, which despite their limited similarity, may function redundantly to promote cell-cell interaction and biofilm formation. Functional diversity of cell wall proteins may be a form of regulation that provides the aggregative phenotype of C. auris with flexibility and rapid adaptation to the environment, potentially impacting persistence and virulence.

2.
Res Sq ; 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38562859

Candida auris is an emerging nosocomial fungal pathogen associated with life-threatening invasive disease due to its persistent colonization, high level of transmissibility and multi-drug resistance. Aggregative and non-aggregative growth phenotypes for C. auris strains with different biofilm forming abilities, drug susceptibilities and virulence characteristics have been described. Using comprehensive transcriptional analysis we identified key cell surface adhesins that were highly upregulated in the aggregative phenotype during in vitro and in vivo grown biofilms using a mouse model of catheter infection. Phenotypic and functional evaluations of generated null mutants demonstrated crucial roles for the adhesins Als5 and Scf1 in mediating cell-cell adherence, coaggregation and biofilm formation. While individual mutants were largely non-aggregative, in combination cells were able to co-adhere and aggregate, as directly demonstrated by measuring cell adhesion forces using single-cell atomic force spectroscopy. This co-adherence indicates their role as complementary adhesins, which despite their limited similarity, may function redundantly to promote cell-cell interaction and biofilm formation. Functional diversity of cell wall proteins may be a form of regulation that provides the aggregative phenotype of C. auris with flexibility and rapid adaptation to the environment, potentially impacting persistence and virulence.

3.
Microbiology (Reading) ; 170(3)2024 03.
Article En | MEDLINE | ID: mdl-38535895

Fluorescent proteins (FPs) have always been a crucial part of molecular research in life sciences, including the research into the human fungal pathogen Candida albicans, but have obvious shortcomings such as their relatively large size and long maturation time. However, the next generation of FPs overcome these issues and rely on the binding of a fluorogen for the protein to become fluorescently active. This generation of FPs includes the improved version of Fluorescence activating and Absorption Shifting Tag (iFAST). The binding between the fluorogen and the iFAST protein is reversible, thus resulting in reversible fluorescence. The fluorogens of iFAST are analogues of 4-hydroxylbenzylidene-rhodanine (HBR). These HBR analogues differ in spectral properties depending on functional group substitutions, which gives the iFAST system flexibility in terms of absorbance and emission maxima. In this work we describe and illustrate the application of iFAST as a protein tag and its reversible multi-colour characteristics in C. albicans.


Candida albicans , Rhodanine , Humans , Color
4.
BMC Microbiol ; 24(1): 66, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38413885

BACKGROUND: Candida albicans is a fungal pathogen causing human infections. Here we investigated differential gene expression patterns and functional enrichment in C. albicans strains grown under different conditions. METHODS: A systematic GEO database search identified 239 "Candida albicans" datasets, of which 14 were selected after rigorous criteria application. Retrieval of raw sequencing data from the ENA database was accompanied by essential metadata extraction from dataset descriptions and original articles. Pre-processing via the tailored nf-core pipeline for C. albicans involved alignment, gene/transcript quantification, and diverse quality control measures. Quality assessment via PCA and DESeq2 identified significant genes (FDR < = 0.05, log2-fold change > = 1 or <= -1), while topGO conducted GO term enrichment analysis. Exclusions were made based on data quality and strain relevance, resulting in the selection of seven datasets from the SC5314 strain background for in-depth investigation. RESULTS: The meta-analysis of seven selected studies unveiled a substantial number of genes exhibiting significant up-regulation (24,689) and down-regulation (18,074). These differentially expressed genes were further categorized into 2,497 significantly up-regulated and 2,573 significantly down-regulated Gene Ontology (GO) IDs. GO term enrichment analysis clustered these terms into distinct groups, providing insights into the functional implications. Three target gene lists were compiled based on previous studies, focusing on central metabolism, ion homeostasis, and pathogenicity. Frequency analysis revealed genes with higher occurrence within the identified GO clusters, suggesting their potential as antifungal targets. Notably, the genes TPS2, TPS1, RIM21, PRA1, SAP4, and SAP6 exhibited higher frequencies within the clusters. Through frequency analysis within the GO clusters, several key genes emerged as potential targets for antifungal therapies. These include RSP5, GLC7, SOD2, SOD5, SOD1, SOD6, SOD4, SOD3, and RIM101 which exhibited higher occurrence within the identified clusters. CONCLUSION: This comprehensive study significantly advances our understanding of the dynamic nature of gene expression in C. albicans. The identification of genes with enhanced potential as antifungal drug targets underpins their value for future interventions. The highlighted genes, including TPS2, TPS1, RIM21, PRA1, SAP4, SAP6, RSP5, GLC7, SOD2, SOD5, SOD1, SOD6, SOD4, SOD3, and RIM101, hold promise for the development of targeted antifungal therapies.


Antifungal Agents , Candida albicans , Antifungal Agents/pharmacology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Superoxide Dismutase-1 , Virulence
6.
FEBS J ; 2023 Oct 17.
Article En | MEDLINE | ID: mdl-37846606

Invasive fungal infections are rapidly increasing, and the opportunistic pathogenic Candida species are the fourth most common cause of nosocomial systemic infections. The current antifungal classes, of which azoles are the most widely used, all have shortcomings. Azoles are generally considered fungistatic rather than fungicidal, they do not actively kill fungal cells and therefore resistance against azoles can be rapidly acquired. Combination therapies with azoles provide an interesting therapeutic outlook and agents limiting iron are excellent candidates. We summarize how iron is acquired by the host and transported towards both storage and iron-utilizing organelles. We indicate whether these pathways alter azole susceptibility and/or tolerance, to finally link these transport mechanisms to mitochondrial iron availability. In this review, we highlight putative novel intracellular iron shuffling mechanisms and indicate that mitochondrial iron dynamics in relation to azole treatment and iron limitation is a significant knowledge gap.

7.
Proc Natl Acad Sci U S A ; 120(40): e2302996120, 2023 10 03.
Article En | MEDLINE | ID: mdl-37748053

Plant roots explore the soil for water and nutrients, thereby determining plant fitness and agricultural yield, as well as determining ground substructure, water levels, and global carbon sequestration. The colonization of the soil requires investment of carbon and energy, but how sugar and energy signaling are integrated with root branching is unknown. Here, we show through combined genetic and chemical modulation of signaling pathways that the sugar small-molecule signal, trehalose-6-phosphate (T6P) regulates root branching through master kinases SNF1-related kinase-1 (SnRK1) and Target of Rapamycin (TOR) and with the involvement of the plant hormone auxin. Increase of T6P levels both via genetic targeting in lateral root (LR) founder cells and through light-activated release of the presignaling T6P-precursor reveals that T6P increases root branching through coordinated inhibition of SnRK1 and activation of TOR. Auxin, the master regulator of LR formation, impacts this T6P function by transcriptionally down-regulating the T6P-degrader trehalose phosphate phosphatase B in LR cells. Our results reveal a regulatory energy-balance network for LR formation that links the 'sugar signal' T6P to both SnRK1 and TOR downstream of auxin.


Arabidopsis Proteins , Arabidopsis , Sugar Phosphates , Arabidopsis/genetics , Trehalose , Indoleacetic Acids , Protein Serine-Threonine Kinases/genetics , Arabidopsis Proteins/genetics
8.
Expert Rev Anti Infect Ther ; 21(8): 799-812, 2023.
Article En | MEDLINE | ID: mdl-37449774

INTRODUCTION: Recurrent vulvovaginal candidiasis (RVVC) affects women worldwide and has far-reaching implications for a patient's quality of life. For decades, maintenance treatment using the azole antifungal fluconazole was the preferred treatment. Although efficient in controlling the symptoms, the development of azole resistance and high rates of recurrence after therapy cessation have emerged as significant limitations. Nevertheless, persistent efforts have delivered novel treatment options. Oteseconazole (VT-1161), marketed as VIVJOA, is an oral, tetrazole antifungal with unprecedented specificity toward the fungal lanosterol 14α-demethylase. AREAS COVERED: We reviewed literature data on oteseconazole with a focus on the management of RVVC. EXPERT OPINION: Therapeutic options for RVVC are limited, and novel, innovative approaches are needed to treat this debilitating condition. These therapies need to be well-tolerated and prevent RVVC recurrence. The available clinical data show excellent safety and efficacy, with an unprecedentedly low recurrence rate. However, we believe health-care providers should be mindful to monitor for the development of resistance, as this may result in treatment failure. Further, the availability and cost may, like for most novel drugs, affect the widespread clinical implementation of VIVJOA. Altogether, we are convinced that VIVJOA is a significant advance in RVVC management.


Antifungal Agents , Candidiasis, Vulvovaginal , Female , Humans , Candidiasis, Vulvovaginal/drug therapy , Candidiasis, Vulvovaginal/microbiology , Quality of Life , Drug Resistance, Fungal , Fluconazole , Azoles/pharmacology , Azoles/therapeutic use , Recurrence
9.
NPJ Biofilms Microbiomes ; 9(1): 39, 2023 Jun 17.
Article En | MEDLINE | ID: mdl-37328504

Staphylococcus aureus is considered a high priority pathogen by the World Health Organization due to its high prevalence and the potential to form biofilms. Currently, the available treatments for S. aureus biofilm-associated infections do not target the extracellular polymeric substances (EPS) matrix. This matrix is a physical barrier to bactericidal agents, contributing to the increase of antimicrobial tolerance. The present work proposes the development of lipid nanoparticles encapsulating caspofungin (CAS) as a matrix-disruptive nanosystem. The nanoparticles were functionalized with D-amino acids to target the matrix. In a multi-target nano-strategy against S. aureus biofilms, CAS-loaded nanoparticles were combined with a moxifloxacin-loaded nanosystem, as an adjuvant to promote the EPS matrix disruption. In vitro and in vivo studies showed biofilm reduction after combining the two nanosystems. Besides, the combinatory therapy showed no signs of bacterial dissemination into vital organs of mice, while dissemination was observed for the treatment with the free compounds. Additionally, the in vivo biodistribution of the two nanosystems revealed their potential to reach and accumulate in the biofilm region, after intraperitoneal administration. Thus, this nano-strategy based on the encapsulation of matrix-disruptive and antibacterial agents is a promising approach to fight S. aureus biofilms.


Staphylococcal Infections , Staphylococcus aureus , Animals , Mice , Tissue Distribution , Biofilms , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
11.
J Fungi (Basel) ; 9(2)2023 Jan 28.
Article En | MEDLINE | ID: mdl-36836286

Due to their eukaryotic heritage, the differences between a fungal pathogen's molecular makeup and its human host are small. Therefore, the discovery and subsequent development of novel antifungal drugs are extremely challenging. Nevertheless, since the 1940s, researchers have successfully uncovered potent candidates from natural or synthetic sources. Analogs and novel formulations of these drugs enhanced the pharmacological parameters and improved overall drug efficiency. These compounds ultimately became the founding members of novel drug classes and were successfully applied in clinical settings, offering valuable and efficient treatment of mycosis for decades. Currently, only five different antifungal drug classes exist, all characterized by a unique mode of action; these are polyenes, pyrimidine analogs, azoles, allylamines, and echinocandins. The latter, being the latest addition to the antifungal armamentarium, was introduced over two decades ago. As a result of this limited arsenal, antifungal resistance development has exponentially increased and, with it, a growing healthcare crisis. In this review, we discuss the original sources of antifungal compounds, either natural or synthetic. Additionally, we summarize the existing drug classes, potential novel candidates in the clinical pipeline, and emerging non-traditional treatment options.

12.
J Fungi (Basel) ; 9(2)2023 Feb 04.
Article En | MEDLINE | ID: mdl-36836315

The PKA pathway is a signaling pathway involved in virulence in Candida albicans. This mechanism can be activated via addition of glucose and activation involves at least two proteins, namely Cdc25 and Ras1. Both proteins are involved in specific virulence traits. However, it is not clear if Cdc25 and Ras1 also affect virulence independently of PKA. C. albicans holds a second, atypical, Ras protein, Ras2, but its function in PKA activation is still unclear. We investigated the role of Cdc25, Ras1, and Ras2 for different in vitro and ex vivo virulence characteristics. We show that deletion of CDC25 and RAS1 result in less toxicity towards oral epithelial cells, while deletion of RAS2 has no effect. However, toxicity towards cervical cells increases in both the ras2 and the cdc25 mutants while it decreases in a ras1 mutant compared to the WT. Toxicity assays using mutants of the transcription factors downstream of the PKA pathway (Efg1) or the MAPK pathway (Cph1) show that the ras1 mutant shows similar phenotypes as the efg1 mutant, whereas the ras2 mutant shows similar phenotypes as the cph1 mutant. These data show niche-specific roles for different upstream components in regulating virulence through both signal transduction pathways.

14.
Pharmaceutics ; 14(11)2022 Oct 26.
Article En | MEDLINE | ID: mdl-36365113

Bacterial biofilms of Staphylococcus aureus, formed on implants, have a massive impact on the increasing number of antimicrobial resistance cases. The current treatment for biofilm-associated infections is based on the administration of antibiotics, failing to target the biofilm matrix. This work is focused on the development of multiple lipid nanoparticles (MLNs) encapsulating the antibiotic moxifloxacin (MOX). The nanoparticles were functionalized with d-amino acids to target the biofilm matrix. The produced formulations exhibited a mean hydrodynamic diameter below 300 nm, a low polydispersity index, and high encapsulation efficiency. The nanoparticles exhibited low cytotoxicity towards fibroblasts and low hemolytic activity. To target bacterial cells and the biofilm matrix, MOX-loaded MLNs were combined with a nanosystem encapsulating a matrix-disruptive agent: N-acetyl-L-cysteine (NAC). The nanosystems alone showed a significant reduction of both S. aureus biofilm viability and biomass, using the microtiter plate biofilm model. Further, biofilms grown inside polyurethane catheters were used to assess the effect of combining MOX-loaded and NAC-loaded nanosystems on biofilm viability. An increased antibiofilm efficacy was observed when combining the functionalized MOX-loaded MLNs and NAC-loaded nanosystems. Thus, nanosystems as carriers of bactericidal and matrix-disruptive agents are a promising combinatory strategy towards the eradication of S. aureus biofilms.

15.
Commun Biol ; 5(1): 1118, 2022 10 21.
Article En | MEDLINE | ID: mdl-36271293

The increasing prevalence of candidosis caused by Candida glabrata is related to its ability to acquire azole resistance. Although azole resistance mechanisms are well known, the mechanisms for azole import into fungal cells have remained obscure. In this work, we have characterized two hexose transporters in C. glabrata and further investigate their role as potential azole importers. Three azole susceptible C. glabrata clinical isolates were evolved towards azole resistance and the acquired resistance phenotype was found to be independent of CgPDR1 or CgERG11 mutations. Through whole-genome sequencing, CgHXT4/6/7 was found to be mutated in the three evolved strains, when compared to their susceptible parents. CgHxt4/6/7 and the 96% identical CgHxt6/7 were found to confer azole susceptibility and increase azole accumulation in C. glabrata cells, strikingly rescuing the susceptibility phenotype imposed by CgPDR1 deletion, while the identified loss-of-function mutation in CgHXT4/6/7, leads to increased azole resistance. In silico docking analysis shows that azoles display a strong predicted affinity for the glucose binding site of CgHxt4/6/7. Altogether, we hypothesize that hexose transporters, such as CgHxt4/6/7 and CgHxt6/7, may constitute a family of azole importers, involved in clinical drug resistance in fungal pathogens, and constituting promising targets for improved antifungal therapy.


Azoles , Candida glabrata , Candida glabrata/genetics , Azoles/pharmacology , Azoles/therapeutic use , Drug Resistance, Fungal/genetics , Antifungal Agents/pharmacology , Glucose , Evolution, Molecular , Hexoses
16.
Fish Shellfish Immunol ; 131: 1343-1351, 2022 Dec.
Article En | MEDLINE | ID: mdl-36216228

In the present research, in order to screen out the best candidates from 12 different EOCs, we proposed three in vivo screening methods, namely the screening method of bioluminescence of V. campbellii associated with brine shrimp, regrowth performance of V. campbellii, and immune gene expression of brine shrimp without challenge. Our result showed that challenged with V. campbellii at 107 cells/mL, the survival of the brine shrimp at 48 h was significantly increased after treatment with the EOCs (at 0.0005%, v/v) of 4-allylanisole, R-(+)-limonene, S-(-)-limonene, (-)-terpinen-4-ol, (±)-citronellal, citral, trans-cinnamaldehyde and (+)-carvone, compared to the positive control group. Also, it was observed that the EOCs- of 4-allylanisloe, R-(+)-limonene, S-(-)-limonene, (-)-ß-pinene, geraniol, (±)-citronellal, citral, trans-cinnamaldehyde and (+)-carvone decreased significantly the in vivo bioluminescence of V. campbellii at 36 h after Vibrio exposure. The regrowth assay showed that independently from incubation time (1, 12 or 24 h), no difference was observed in the regrowth curve in all EOC treatment groups compared to the positive control group. The dscam gene expression in the (±)-citronellal group, and the sod gene in the citral group were observed to be significantly higher than in the negative control at 24 h, respectively. However, most of the immune genes were down-regulated in the EOC groups. Combining the survival data at 48 h with the bioluminescence result at 36 h, it was noted that the survival rate of brine shrimp was moderately correlated with in vivo bioluminescence of V. campbellii. The results indicate that the approach of determining in vivo bioluminescence of V. campbellii is a moderately reliable, fastest, and cheapest screening method for EOCs. As the regrowth performance assay of V. campbellii, and the immune genes expression assay of brine shrimp without challenge cannot predict Artemia survival properly, they cannot be used as screening methods for EOCs. Moreover, the immune genes expression assay is relatively slow, time-consuming and costly.


Oils, Volatile , Vibrio Infections , Vibrio , Animals , Artemia , Limonene/metabolism , Oils, Volatile/pharmacology , Oils, Volatile/metabolism , Vibrio Infections/veterinary , Vibrio/physiology
17.
J Fungi (Basel) ; 8(9)2022 Sep 13.
Article En | MEDLINE | ID: mdl-36135684

Malassezia yeasts have recently gained medical importance as emerging pathogens associated with a wide range of dermatological and systemic infections. Since standardized methods for in vitro antifungal susceptibility testing have not yet been established for Malassezia spp., related diseases are always treated empirically. As a result, a high rate of recurrence and decreased antifungal susceptibility have appeared. Thus, the aims of the study were to assess and analyze the in vitro susceptibility of Malassezia isolated from pityriasis versicolor (PV) lesions and healthy controls. A total of 58 Malassezia strains isolated from PV patients and healthy controls were tested. In vitro antifungal susceptibility testing was conducted using the CLSI broth microdilution with some modifications. Candida spp. criteria established in accordance with CLSI guidelines were used for data interpretation. Ketoconazole and posaconazole seemed to be the most effective molecules against Malassezia species. However, considerable percentages of itraconazole, fluconazole, and amphotericin B ''resistant'' strains (27.6%, 29.3%, and 43.1%, respectively) were revealed in this study. Malassezia furfur, M. sympodialis, and M. globosa showed different susceptibility profiles to the drugs tested. These results emphasize the importance of accurately identifying and evaluating the antifungal susceptibility of Malassezia species in order to guide a specific and effective treatment regimen.

18.
Methods Mol Biol ; 2542: 177-191, 2022.
Article En | MEDLINE | ID: mdl-36008665

Fluorescence or Förster resonance energy transfer (FRET)-based biosensors are used to monitor activity through molecular pathways inside the cell. Binding of secondary metabolites or enzyme-guided modification of protein targets can be assessed by quantifying the rate of energy transfer between two adequate fluorophores. The AKAR3 sensor contains a protein kinase A (PKA) phosphorylation site, which upon phosphorylation interacts with a ligand domain, bringing together FRET donor and acceptor fluorophores and allowing FRET. The EPAC2 sensor contains a cyclic adenosine monophosphate (cAMP)-binding domain. Upon binding of cAMP, donor and acceptor molecules are separated, thereby lowering energy transfer. Since the cAMP-PKA pathway is of great importance for regulation of growth, survival, and virulence in Candida species, monitoring the activity of this pathway in a time- and space-resolved manner allows for detailed investigation of potential drug targets. In this chapter, we describe how these FRET-based biosensors can be used in a practical setup.


Biosensing Techniques , Fluorescence Resonance Energy Transfer , Candida glabrata , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Fluorescent Dyes
19.
Plant Mol Biol ; 108(6): 531-547, 2022 Apr.
Article En | MEDLINE | ID: mdl-35088230

KEY MESSAGE: Alternative translation initiation of the unique Arabidopsis trehalase gene allows for the production of two isoforms with different subcellular localization, providing enzyme access to both intra- and extra-cellular trehalose. The trehalose-hydrolyzing enzyme trehalase mediates drought stress tolerance in Arabidopsis thaliana by controlling ABA-induced stomatal closure. We now report the existence of two trehalase isoforms, produced from a single transcript by alternative translation initiation. The longer full-length N-glycosylated isoform (AtTRE1L) localizes in the plasma membrane with the catalytic domain in the apoplast. The shorter isoform (AtTRE1S) lacks the transmembrane domain and localizes in the cytoplasm and nucleus. The two isoforms can physically interact and this interaction affects localization of AtTRE1S. Consistent with their role in plant drought stress tolerance, both isoforms are activated by AtCPK10, a stress-induced calcium-dependent guard cell protein kinase. Transgenic plants expressing either isoform indicate that both can mediate ABA-induced stomatal closure in response to drought stress but that the short (cytoplasmic/nuclear) isoform, enriched in those conditions, is significantly more effective.


Arabidopsis Proteins , Arabidopsis , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Droughts , Gene Expression Regulation, Plant , Plant Stomata , Plants, Genetically Modified/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Stress, Physiological/genetics , Trehalase/genetics , Trehalase/metabolism , Trehalase/pharmacology
20.
Trends Pharmacol Sci ; 43(1): 69-79, 2022 01.
Article En | MEDLINE | ID: mdl-34756759

To treat infections caused by Candida albicans, azoles, polyenes, and echinocandins are used. However, resistance occurs against all three, so there is an urgent need for new antifungal drugs with a novel mode of action. Recently, it became clear that central metabolism plays an important role in the virulence of C. albicans. Glycolysis is, for example, upregulated during virulence conditions, whereas the glyoxylate cycle is important upon phagocytosis by host immune cells. These findings indicate that C. albicans adapts its metabolism to the environment for maximal virulence. In this review, we provide an overview of the potency of different central metabolic pathways and their key enzymes as potential antifungal drug targets.


Antifungal Agents , Candida albicans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Humans , Metabolic Networks and Pathways , Virulence
...